Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D.
نویسندگان
چکیده
The microfilament inhibitor cytochalasin D inhibits extrusion of the first polar body when present during the first meiotic division of mouse oocytes; however, it does not interfere with anaphase movement of chromosomes, and thus induces the formation of tetraploid oocytes. After the separation of chromosomes in anaphase, two spindles start to assemble. However, they merge rapidly and a single meiotic spindle forms. During the transition between metaphase I and metaphase II, in the presence of cytochalasin D, a drop in histone kinase activity takes place demonstrating a transitional decrease in the activity of the maturation promoting factor. These oocytes can be activated parthenogenetically a few hours after washing out the inhibitor. After completion of the second meiotic division and extrusion of a polar body, they contain a diploid number of chromosomes. They are genetically identical to each other and to their mother. Such eggs develop to the blastocyst stage and can implant in the uteri of foster mothers. Most of these fetuses die before the 9th day of gestation, as do diploid control fetuses treated with cytochalasin D during the second meiotic division. The heterozygous state of the experimental embryos obtained after activation of eggs recovered from heterozygous females and treated with cytochalasin D during the first meiotic division was confirmed using a glucose-phosphate isomerase assay. This technique allows the production of genetic clones of parthenogenetic embryos by simple means.
منابع مشابه
P-229: Chromosomal Analysis of Parthenogenetic Mouse Embryos Generated from In Vitro Activated Oocytes by Hydrostatic Pressure and Ethanol and Cytochalasin B
Background: Studies of preimplantation stage embryos by classic cytogenetic techniques have limitations, starting with the need for good metaphase stage when only one third of all analyzed embryos may show good quality metaphases. The incidence of chromosome anomalies in embryos produced by in vitro procedures is generally higher than that of embryos formed in vivo. Pressure specifically affect...
متن کاملP-75: The Effect of Hydrostatic Pressure in The Presence of Different Concentrations of Extracellular Calcium, Ethanol and Cytochalasin B on Parthenogenetic Activation of Mouse oocytes
Background: The parthenogenetic of oocytes is important in cloning research, as artificial activation of oocytes is an essential component of nucleus transfer protocols. Hydrostatic pressure can act as a mechanical stimulator that rearranges egg contents. Ethanol promotes a single intracellular Ca2+ increase of greater and longer amplitude than the initial increase observed at fertilization. In...
متن کاملP-97: Parthenogenetic Activation of Mouse Oocyte Using Calcium Ionophore in The Presence of Different Concentrations of Extracellular Calcium
Background: Parthenogenetic activation is a possible way to produce homogeneous embryos with the some ploidy. Probably such embryos could be used in other areas of biotechnology. Calcium signals are known as important regulators of oocyte activation. Extracellular calcium is required for initiation of meiotic resumption and development. Calcium ionophore A23187 is known to elevate intracellular...
متن کاملP-76: Cytogenetic Investigation of Parthenogenetic Mouse Embryos Generated from In Vitro Activated Oocytes by Hydrostatic Pressure in The Presence of Calcium Ionophore and Ethanol
Background: The advances in cytogenetic techniques during the last few years have permitted not only the study of large populations of wild and domestic animals, but also the detection of chromosome anomalies in embryos. Chromosomal abnormalities are the most common cause of embryonic and fetal mortality in mammals. Most reports of chromosome anomalies in parthenogenetic embryos describe numeri...
متن کاملP-94: The Effect of Calcium Ionophore A23187 and Ethanol on Parthenogenetic Activation of Mouse Oocytes in Presence of Hydrostatic Pressure and Cy-tochalasin B
Background: Parthenogenetic activation of mammalian oocytes using artificial stimuli is commonly used in various reproductive bio-techniques. Calcium ionophore is known to elevate intracellular calcium levels in the cytoplasm of oocytes through the influx of calcium from extracellular spaces. Ethanol promotes a single intracellular Ca2+ increase of greater and longer amplitude than the initial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 111 3 شماره
صفحات -
تاریخ انتشار 1991